Reinhard Wilhelm

Universität des Saarlandes

Static Program Analysis

ECI 2013 Winter School

Slides based on:

- H. Seidl, R. Wilhelm, S. Hack: Compiler Design, Volume 3, Analysis and Transformation, Springer Verlag, 2012
- F. Nielson, H. Riis Nielson, C. Hankin: Principles of Program Analysis, Springer Verlag, 1999
- R. Wilhelm: Determining Bounds on Execution Times. Embedded Systems Design and Verification, 2009, CRC Press
- M. Sagiv, T. W. Reps, R. Wilhelm: Parametric shape analysis via 3-valued logic. ACM Trans. Program. Lang. Syst. 24(3): 217-298 (2002)
- Helmut Seidl's slides

A Short History of Static Program Analysis

- Early high-level programming languages were implemented on very small and very slow machines.
- Compilers needed to generate executables that were extremely efficient in space and time.
- Compiler writers invented efficiency-increasing program transformations, wrongly called optimizing transformations.
- Transformations must not change the semantics of programs.
- Enabling conditions guaranteed semantics preservation.
- Enabling conditions were checked by static analysis of programs.

Theoretical Foundations of Static Program Analysis

- Theoretical foundations for the solution of recursive equations: Kleene (1930s), Tarski (1955)
- Gary Kildall (1972) clarified the lattice-theoretic foundation of data-flow analysis.
- Patrick Cousot (1974) established the relation to the programming-language semantics.

Static Program Analysis as a Verification Method

- Automatic method to derive invariants about program behavior, answers questions about program behavior:
- will index always be within bounds at program point p ?
- will memory access at p always hit the cache?
- answers of sound static analysis are correct, but approximate: don't know is a valid answer!
- analyses proved correct wrt. language semantics,

Proposed Lectures Content:

1. Introductory example: rules-of-sign analysis
2. theoretical foundations: lattices
3. an operational semantics of the language
4. another example: constant propagation
5. relating the semantics to the analysis-correctness proofs
6. some further static analyses in compilers: Elimination of superfluous computations
$\rightarrow \quad$ available expressions
$\rightarrow \quad$ live variables
$\rightarrow \quad$ array-bounds checks
7. timing (WCET) analysis
8. shape analysis

1 Introduction

... in this course and in the Seidl/Wilhelm/Hack book:
a simple imperative programming language with:

- variables
- $R=e$;
- $R=M[e] ;$
- $M\left[e_{1}\right]=e_{2}$;
- if $(e) s_{1}$ else s_{2}
- goto L;
registers
assignments
loads
stores
conditional branching
no loops

An intermediate language into which (almost) everything can be translated.

In particular, no procedures. So, only intra-procedural analyses!

2 Example - Rules-of-Sign Analysis

Problem: Determine at each program point the sign of the values of all variables of numeric type.

Example program:
1: $x=0$;
2: $\mathrm{y}=1 ;$
3: while (y > 0) do
4: $y=y+x ;$
5: $\quad \mathrm{x}=\mathrm{x}+(-1)$;

Program representation as control-flow graphs

What are the ingredients that we need?

More ingredients?

All the ingredients:

- a set of information elements, each a set of possible signs,
- a partial order, " \sqsubseteq ", on these elements, specifying the "relative strength" of two information elements,
- these together form the abstract domain, a lattice,
- functions describing how signs of variables change by the execution of a statement, abstract edge effects,
- these need an abstract arithmetic, an arithmetic on signs.

We construct the abstract domain for single variables starting with the lattice \quad Signs $=2^{\{-, 0,+\}}$ with the relation " $\sqsubseteq "=" \supseteq$ ".

The analysis should "bind" program variables to elements in Signs.
So, the abstract domain is $\mathbb{D}=(\text { Vars } \rightarrow \text { Signs })_{\perp}$, a Sign-environment.
$\perp \in \mathbb{D}$ is the function mapping all arguments to $\}$.
The partial order on \mathbb{D} is $\quad D_{1} \sqsubseteq D_{2} \quad$ iff

$$
\begin{array}{ll}
D_{1}=\perp & \text { or } \\
D_{1} x \supseteq D_{2} x & (x \in \text { Vars })
\end{array}
$$

Intuition?

The analysis should "bind" program variables to elements in Signs.
So, the abstract domain is $\mathbb{D}=(\text { Vars } \rightarrow \text { Signs })_{\perp}$. a Sign-environment.
$\perp \in \mathbb{D}$ is the function mapping all arguments to $\}$.
The partial order on \mathbb{D} is $\quad D_{1} \sqsubseteq D_{2} \quad$ iff

$$
\begin{array}{ll}
D_{1}=\perp & \text { or } \\
D_{1} x \supseteq D_{2} x & (x \in \text { Vars })
\end{array}
$$

Intuition?
D_{1} is at least as precise as D_{2} since D_{2} admits at least as many signs as D_{1}

How did we analyze the program?

In particular, how did we walk the lattice for y at program point 5?

How is a solution found?
Iterating until a fixed-point is reached

0	1	2	3	4	5

Idea:

- We want to determine the sign of the values of expressions.

Idea:

- We want to determine the sign of the values of expressions.
- For some sub-expressions, the analysis may yield $\quad\{+,-, 0\}$, which means, it couldn't find out.

Idea:

- We want to determine the signs of the values of expressions.
- For some sub-expressions, the analysis may yield $\quad\{+,-, 0\}$, which means, it couldn't find out.
- We replace the concrete operators $\quad \square \quad$ working on values by abstract operators \square^{\sharp} working on signs:

Idea:

- We want to determine the signs of the values of expressions.
- For some sub-expressions, the analysis may yield $\quad\{+,-, 0\}$, which means, it couldn't find out.
- We replace the concrete operators $\quad \square$ working on values by abstract operators \square^{\sharp} working on signs:
- The abstract operators allow to define an abstract evaluation of expressions:

$$
\llbracket e \rrbracket^{\sharp}:(\text { Vars } \rightarrow \text { Signs }) \rightarrow \text { Signs }
$$

Determining the sign of expressions in a Sign-environment works as follows:

$$
\begin{array}{ll}
\llbracket c \rrbracket^{\sharp} D & = \begin{cases}\{+\} & \text { if } \mathrm{c}>0 \\
\{-\} & \text { if } \mathrm{c}<0 \\
\{0\} & \text { if } \mathrm{c}=0\end{cases} \\
\llbracket v \rrbracket^{\sharp} & =D(v) \\
\llbracket e_{1} \square e_{2} \rrbracket^{\sharp} D & =\llbracket e_{1} \rrbracket^{\sharp} D \square^{\sharp} \llbracket e_{2} \rrbracket^{\sharp} D \\
\llbracket \square e \rrbracket^{\sharp} D & =\square^{\sharp} \llbracket e \rrbracket^{\sharp} D
\end{array}
$$

Abstract operators working on signs (Addition)

$+\#$	$\{0\}$	$\{+\}$	$\{-\}$	$\{-, 0\}$	$\{-,+\}$	$\{0,+\}$
$\{0\}$	$\{0\}$	$\{+\}$				
$\{+\}$						
$\{-\}$						
$\{-, 0\}$						
$\{-,+\}$						
$\{0,+\}$						
$\{-, 0,+\}$	$\{-, 0,+\}$					

Abstract operators working on signs (Multiplication)

$\times^{\#}$	$\{0\}$	$\{+\}$	$\{-\}$	$\{-, 0\}$	$\{-,+\}$	$\{0,+\}$
$\{0\}$	$\{0\}$	$\{0\}$				
$\{+\}$						
$\{-\}$						
$\{-, 0\}$						
$\{-,+\}$						
$\{0,+\}$						
$\{-, 0,+\}$	$\{0\}$					

Abstract operators working on signs (unary minus)

$-\#$	$\{0\}$	$\{+\}$	$\{-\}$	$\{-, 0\}$	$\{-,+\}$	$\{0,+\}$	$\{-, 0,+\}$
	$\{0\}$	$\{-\}$	$\{+\}$	$\{+, 0\}$	$\{-,+\}$	$\{0,-\}$	$\{-, 0,+\}$

Working an example:

$$
D=\{x \mapsto\{+\}, y \mapsto\{+\}\}
$$

$$
\begin{aligned}
\llbracket x+7 \rrbracket^{\sharp} D & =\llbracket x \rrbracket^{\sharp} D+^{\sharp} \llbracket \tau \rrbracket^{\sharp} D \\
& =\{+\}+^{\sharp}\{+\} \\
& =\{+\} \\
\llbracket x+(-y) \rrbracket^{\sharp} D & =\{+\}+^{\sharp}\left(-\sharp \llbracket y \rrbracket^{\sharp} D\right) \\
& =\{+\}+^{\sharp}(-\sharp\{+\}) \\
& =\{+\}+^{\sharp}\{-\} \\
& =\{+,-, 0\}
\end{aligned}
$$

$\llbracket l a b \rrbracket^{\sharp}$ is the abstract edge effects associated with edge k.
It depends only on the label lab:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} D & =D \\
\llbracket \operatorname{true}(e) \rrbracket^{\sharp} D & =D \\
\llbracket \text { false }(e) \rrbracket^{\sharp} D & =D \\
\llbracket x=e ; \rrbracket^{\sharp} D & =D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\} \\
\llbracket x=M[e] ; \rrbracket^{\sharp} D & =D \oplus\{x \mapsto\{+,-, 0\}\} \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} D & =D
\end{array}
$$

... whenever $\quad D \neq \perp$
These edge effects can be composed to the effect of a path $\pi=k_{1} \ldots k_{r}$:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp}
$$

Consider a program node v :
$\rightarrow \quad$ For every path π from program entry start to v the analysis should determine for each program variable x the set of all signs that the values of x may have at v as a result of executing π.
$\rightarrow \quad$ Initially at program start, no information about signs is available.
$\rightarrow \quad$ The analysis computes a superset of the set of signs as safe information.
\Longrightarrow For each node v, we need the set:

$$
\mathcal{S}[v]=\bigcup\left\{\llbracket \pi \rrbracket^{\sharp} \perp \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Question:

How do we compute $\mathcal{S}[u]$ for every program point u ?

Question:

How can we compute $\mathcal{S}[u]$ for every program point u ?

Collect all constraints on the values of $\mathcal{S}[u]$ into a system of constraints:

$$
\begin{array}{llll}
\mathcal{S}[\text { start }] & \supseteq & \perp & \\
\mathcal{S}[v] & \supseteq & \llbracket k \rrbracket^{\sharp}(\mathcal{S}[u]) & k=(u,, v)
\end{array} \quad \text { edge }
$$

Why \supseteq ?

Wanted:

- a least solution (why least?)
- an algorithm that computes this solution

Example:

$$
\begin{aligned}
\mathcal{S}[0] & \supseteq \\
\mathcal{S}[1] & \supseteq \mathcal{S}[0] \oplus\{x \mapsto\{0\}\} \\
\mathcal{S}[2] & \supseteq \mathcal{S}[1] \oplus\{y \mapsto\{+\}\} \\
\mathcal{S}[2] & \supseteq \mathcal{S}[5] \oplus\left\{x \mapsto \llbracket x+(-1) \rrbracket^{\sharp} \mathcal{S}[5]\right\} \\
\mathcal{S}[3] & \supseteq \mathcal{S}[2] \\
\mathcal{S}[4] & \supseteq \mathcal{S}[2] \\
\mathcal{S}[5] & \supseteq \mathcal{S}[4] \oplus\left\{y \mapsto \llbracket y+x \rrbracket^{\sharp} \mathcal{S}[4]\right\}
\end{aligned}
$$

3 An Operational Semantics

Programs are represented as control-flow graphs.
Example:

Thereby, represent:

vertex	program point
start	program start
stop	program exit
edge	labeled with a statement or a condition

Thereby, represent:

vertex	program point
start	program start
stop	program exit
edge	step of computation

Edge Labelings:
Test : $\quad \operatorname{Pos}(e)$ or Neg (e) (better true (e) or false (e))
Assignment: $\quad R=e$;
Load : $\quad R=M[e]$;
Store : $\quad M\left[e_{1}\right]=e_{2}$;
Nop :

Execution of a path is a computation.
A computation transforms a state $s=(\rho, \mu)$ where:

$\rho:$ Vars \rightarrow int	values of variables (contents of symbolic registers)
$\mu: \mathbb{N} \rightarrow \mathrm{int}$	contents of memory

Every edge $k=(u, l a b, v)$ defines a partial transformation

$$
\llbracket k \rrbracket=\llbracket l a b \rrbracket
$$

of the state:

$$
\begin{array}{lll}
\llbracket ; \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\llbracket \operatorname{true}(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket e \rrbracket \rho \neq 0 \\
\llbracket \text { false }(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket e \rrbracket \rho=0
\end{array}
$$

$$
\begin{array}{lll}
\llbracket ; \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\llbracket \operatorname{true}(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket \ell \rrbracket \rho \neq 0 \\
\llbracket \text { false }(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket e \rrbracket \rho=0
\end{array}
$$

// $\llbracket e \rrbracket: \quad$ evaluation of the expression e, e.g.

$$
\begin{aligned}
& \text { // } \quad \llbracket x+y \rrbracket\{x \mapsto 7, y \mapsto-1\}=6 \\
& / / \quad \llbracket!(x==4) \rrbracket\{x \mapsto 5\}=1
\end{aligned}
$$

$$
\begin{array}{lll}
\llbracket ; \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\llbracket \operatorname{true}(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket \ell \rrbracket \rho \neq 0 \\
\llbracket \text { false }(e) \rrbracket(\rho, \mu) & =(\rho, \mu) & \\
\text { if } \llbracket \ell \rrbracket \rho=0
\end{array}
$$

$/ / \llbracket e \rrbracket: \quad$ evaluation of the expression e, e.g.
// $\llbracket x+y \rrbracket\{x \mapsto 7, y \mapsto-1\}=6$
// $\llbracket!(x==4) \rrbracket\{x \mapsto 5\}=1$

$$
\llbracket R=e ; \rrbracket(\rho, \mu)=(\rho \oplus\{R \mapsto \llbracket e \rrbracket \rho\}, \mu)
$$

where " \oplus " modifies a mapping at a given argument

$$
\left.\begin{array}{l}
\llbracket R=M[e] ; \rrbracket(\rho, \mu)=(\rho \oplus\{R \mapsto \mu(\llbracket e \rrbracket \rho))\}, \mu) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket(\rho, \mu)=\left(\rho, \mu \oplus\left\{\llbracket e_{1} \rrbracket \rho \mapsto \llbracket e_{2} \rrbracket \rho\right\}\right.
\end{array}\right)
$$

Example:

$$
\begin{aligned}
& \llbracket x=x+1 ; \rrbracket(\{x \mapsto 5\}, \mu)=(\rho, \mu) \quad \text { where } \\
& \qquad \begin{aligned}
\rho & =\{x \mapsto 5\} \oplus\{x \mapsto \llbracket x+1 \rrbracket\{x \mapsto 5\}\} \\
& =\{x \mapsto 5\} \oplus\{x \mapsto 6\} \\
& =\{x \mapsto 6\}
\end{aligned}
\end{aligned}
$$

A path $\pi=k_{1} k_{2} \ldots k_{m}$ defines a computation in the state s if

$$
s \in \operatorname{def}\left(\llbracket k_{m} \rrbracket \circ \ldots \circ \llbracket k_{1} \rrbracket\right)
$$

The result of the computation is $\quad \llbracket \pi \rrbracket s=\left(\llbracket k_{m} \rrbracket \circ \ldots \circ \llbracket k_{1} \rrbracket\right) s$

The approach:

A static analysis needs to collect correct and hopefully precise information about a program in a terminating computation.

Concepts:

- partial orders relate information for their contents/quality/precision,
- least upper bounds combine information in the best possible way,
- monotonic functions preserve the order, prevent loss of collected information, prevent oscillation.

4 Complete Lattices

A set \mathbb{D} together with a relation $\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$ is a partial order if for all $a, b, c \in \mathbb{D}$,

$$
\begin{array}{ll}
a \sqsubseteq a & \text { reflexivity } \\
a \sqsubseteq b \wedge b \sqsubseteq a \Longrightarrow a=b & \text { anti-symmetry } \\
a \sqsubseteq b \wedge b \sqsubseteq c \Longrightarrow a \sqsubseteq c & \text { transitivity }
\end{array}
$$

Intuition: \sqsubseteq represents precision.
By convention: $a \sqsubseteq b$ means a is at least as precise as b.

Examples:

1. $\mathbb{D}=2^{\{a, b, c\}}$ with the relation " \subseteq ":

2. The rules-of-sign analysis uses the following lattice $\mathbb{D}=2^{\{-, 0,+\}}$ with the relation " \subseteq " :

3. \mathbb{Z} with the relation " $\leq "$:

4. $\mathbb{Z}_{\perp}=\mathbb{Z} \cup\{\perp\}$ with the ordering:

$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$
x \sqsubseteq d \quad \text { for all } x \in X
$$

$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$
x \sqsubseteq d \quad \text { for all } x \in X
$$

d is called least upper bound (lub) if

1. d is an upper bound and
2. $d \sqsubseteq y$ for every upper bound y of X.
$d \in \mathbb{D}$ is called upper bound for $X \subseteq \mathbb{D}$ if

$$
x \sqsubseteq d \quad \text { for all } x \in X
$$

d is called least upper bound (lub) if

1. d is an upper bound and
2. $d \sqsubseteq y$ for every upper bound y of X.

The least upper bound is the youngest common ancestor in the pictorial representation of lattices.

Intuition: It is the best combined information for X.

Caveat:

- $\quad\{0,2,4, \ldots\} \subseteq \mathbb{Z}$ has no upper bound!
- $\{0,2,4\} \subseteq \mathbb{Z}$ has the upper bounds $4,5,6, \ldots$

A partially ordered set \mathbb{D} is a complete lattice (cl) if every subset $X \subseteq \mathbb{D} \quad$ has a least upper bound $\quad \bigsqcup X \in \mathbb{D}$.

Note:

Every complete lattice has
$\rightarrow \quad$ a least element $\quad \perp=\bigsqcup \emptyset \quad \in \mathbb{D} ;$
$\rightarrow \quad$ a greatest element $\quad T=\bigsqcup \mathbb{D} \quad \in \mathbb{D}$.

Examples:

1. $\mathbb{D}=2^{\{a, b, c\}}$ is a complete lattice
2. $\mathbb{D}=\mathbb{Z}$ with " \leq " is not a complete lattice.
3. $\mathbb{D}=\mathbb{Z}_{\perp}$ is also not a complete lattice
4. With an extra element T, we obtain the flat lattice $\mathbb{Z}_{\perp}^{\top}=\mathbb{Z} \cup\{\perp, \top\}:$

Theorem:
If \mathbb{D} is a complete lattice, then every subset $X \subseteq \mathbb{D}$ has a greatest lower bound ΠX.

Back to the system of constraints for Rules-of-Signs Analysis!

$$
\begin{array}{llll}
\mathcal{S}[\text { start }] & \sqsupseteq & \top & \\
\mathcal{S}[v] & \sqsupseteq \llbracket k \rrbracket^{\sharp}(\mathcal{S}[u]) & k=\left(u,_{-}, v\right) & \text { edge }
\end{array}
$$

Combine all constraints for each variable v by applying the least-upper-bound operator \bigsqcup :

$$
\mathcal{S}[v] \sqsupseteq \bigsqcup\left\{\llbracket k \rrbracket^{\sharp}(\mathcal{S}[u]) \mid k=\left(u,_{-}, v\right) \text { edge }\right\}
$$

Correct because:

$$
x \sqsupseteq d_{1} \wedge \ldots \wedge x \sqsupseteq d_{k} \quad \text { iff } \quad x \sqsupseteq \bigsqcup\left\{d_{1}, \ldots, d_{k}\right\}
$$

Our generic form of the systems of constraints:

$$
\begin{equation*}
x_{i} \quad \sqsupseteq \quad f_{i}\left(x_{1}, \ldots, x_{n}\right) \tag{*}
\end{equation*}
$$

Relation to the running example:

x_{i}	unknown	here:	$\mathcal{S}[u]$
\mathbb{D}	values	here:	Signs
$\sqsubseteq \subseteq \mathbb{D} \times \mathbb{D}$	ordering relation	here:	\subseteq
$f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$	constraint	here:	\ldots

A mapping $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotonic (order preserving) if $\quad f(a) \sqsubseteq f(b) \quad$ for all $a \sqsubseteq b$.

A mapping $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotonic (order preserving) if $f(a) \sqsubseteq f(b) \quad$ for all $\quad a \sqsubseteq b$.

Examples:

(1) $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=2^{U} \quad$ for a set U and $\quad f x=(x \cap a) \cup b$.

Obviously, every such f is monotonic

A mapping $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotonic (order preserving) if $\quad f(a) \sqsubseteq f(b) \quad$ for all $a \sqsubseteq b$.

Examples:

(1) $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=2^{U} \quad$ for a set U and $\quad f x=(x \cap a) \cup b$.

Obviously, every such f is monotonic
(2) $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{Z}$ (with the ordering " $\leq "$). Then:

- $\quad \operatorname{inc} x=x+1 \quad$ is monotonic.
- $\quad \operatorname{dec} x=x-1 \quad$ is monotonic.

A mapping $\quad f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called monotonic (order preserving) if $\quad f(a) \sqsubseteq f(b) \quad$ for all $a \sqsubseteq b$.

Examples:

(1) $\quad \mathbb{D}_{1}=\mathbb{D}_{2}=2^{U} \quad$ for a set U and $\quad f x=(x \cap a) \cup b$.

Obviously, every such f is monotonic
(2) $\mathbb{D}_{1}=\mathbb{D}_{2}=\mathbb{Z}$ (with the ordering " $\leq "$). Then:

- $\quad \operatorname{inc} x=x+1 \quad$ is monotonic.
- $\quad \operatorname{dec} x=x-1 \quad$ is monotonic.
- $\quad \operatorname{inv} x=-x \quad$ is not monotonic

Theorem:
If $\quad f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ and $\quad f_{2}: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3} \quad$ are monotonic, then also
$f_{2} \circ f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3}$

Theorem:
If $\quad f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ and $\quad f_{2}: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3} \quad$ are monotonic, then also
$f_{2} \circ f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3}$

Theorem:
If $\quad f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2} \quad$ and $\quad f_{2}: \mathbb{D}_{2} \rightarrow \mathbb{D}_{3} \quad$ are monotonic, then also
$f_{2} \circ f_{1}: \mathbb{D}_{1} \rightarrow \mathbb{D}_{3}$

Wanted: least solution for:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Wanted: least solution for:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n} \quad$ where

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad \text { with } \quad y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right)
$$

Wanted: least solution for:

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n} \quad$ where

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad \text { with } \quad y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right) .
$$

- If all f_{i} are monotonic, then also F

Wanted: least solution for

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.

Idea:

- Consider $F: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ where

$$
F\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad \text { with } \quad y_{i}=f_{i}\left(x_{1}, \ldots, x_{n}\right) .
$$

- If all f_{i} are monotonic, then also F
- We successively approximate a solution from below. We construct:

$$
\perp, \quad F \perp, \quad F^{2} \perp, \quad F^{3} \perp, \quad \ldots
$$

Intuition: This iteration eliminates unjustified assumptions.
Hope: We eventually reach a solution!

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset				
x_{2}	\emptyset				
x_{3}	\emptyset				

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$			
x_{2}	\emptyset	\emptyset			
x_{3}	\emptyset	$\{c\}$			

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$	$\{a, c\}$		
x_{2}	\emptyset	\emptyset	\emptyset		
x_{3}	\emptyset	$\{c\}$	$\{a, c\}$		

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{lll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$	$\{a, c\}$	$\{a, c\}$	
x_{2}	\emptyset	\emptyset	\emptyset	$\{a\}$	
x_{3}	\emptyset	$\{c\}$	$\{a, c\}$	$\{a, c\}$	

Example:

$$
\mathbb{D}=2^{\{a, b, c\}}, \quad \sqsubseteq=\subseteq
$$

$$
\begin{array}{ll}
x_{1} & \supseteq\{a\} \cup x_{3} \\
x_{2} & \supseteq x_{3} \cap\{a, b\} \\
x_{3} & \supseteq x_{1} \cup\{c\}
\end{array}
$$

The Iteration:

	0	1	2	3	4
x_{1}	\emptyset	$\{a\}$	$\{a, c\}$	$\{a, c\}$	dito
x_{2}	\emptyset	\emptyset	\emptyset	$\{a\}$	
x_{3}	\emptyset	$\{c\}$	$\{a, c\}$	$\{a, c\}$	

Theorem

- $\quad \perp, F \perp, F^{2} \perp, \ldots \quad$ form an ascending chain :

$$
\perp \quad \sqsubseteq \perp \quad \sqsubseteq \quad F^{2} \perp \quad \sqsubseteq \ldots
$$

- If $\quad F^{k} \perp=F^{k+1} \perp, \quad F^{k}$ is the least solution.
- If all ascending chains are finite, such a k always exists.

Theorem

- $\quad \perp, F \perp, F^{2} \perp, \ldots \quad$ form an ascending chain :

$$
\perp \quad \sqsubseteq \quad \sqsubseteq \perp \quad F^{2} \perp \quad \sqsubseteq \quad \ldots
$$

- If $F^{k} \perp=F^{k+1} \perp, \quad$ a solution is obtained, which is the least one.
- If all ascending chains are finite, such a k always exists.

If \mathbb{D} is finite, a solution can be found that is definitely the least solution.

Question: What, if \mathbb{D} is not finite?

Theorem
Knaster - Tarski
Assume \mathbb{D} is a complete lattice. Then every monotonic function $f: \mathbb{D} \rightarrow \mathbb{D}$ has a least fixed point $d_{0} \in \mathbb{D}$. Application:

Assume

$$
\begin{equation*}
x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{*}
\end{equation*}
$$

is a system of constraints where all $f_{i}: \mathbb{D}^{n} \rightarrow \mathbb{D}$ are monotonic.
\Longrightarrow least solution of $(*)=$ least fixed point of F

Example 1: $\quad \mathbb{D}=2^{U}, \quad f x=x \cap a \cup b$

Example 1: $\quad \mathbb{D}=2^{U}, \quad f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U

Example 1: $\quad \mathbb{D}=2^{U}, \quad f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U
1	b	$a \cup b$

Example 1: $\quad \mathbb{D}=2^{U}, \quad f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U
1	b	$a \cup b$
2	b	$a \cup b$

Example 1: $\quad \mathbb{D}=2^{U}, \quad f x=x \cap a \cup b$

f	$f^{k} \perp$	$f^{k} \top$
0	\emptyset	U
1	b	$a \cup b$
2	b	$a \cup b$

Conclusion:

Systems of inequalities can be solved through fixed-point iteration, i.e., by repeated evaluation of right-hand sides

Caveat: Naive fixed-point iteration is rather inefficient

Example:

| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current values of unknowns

Example:

The code for Round Robin Iteration in Java looks as follows:

```
for (i=1;i\leqn;i++) x 
do {
    finished = true;
    for (i=1;i\leqn;i++) {
        new = fi}(\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{n}{})
        if (!(x, (
            finished = false;
            x}=\mp@subsup{x}{i}{}\sqcupnew
        }
    }
} while (!finished);
```


What we have learned:

- The information derived by static program analysis is partially ordered in a complete lattice.
- the partial order represents information content/precision of the lattice elements.
- least upper-bound combines information in the best possible way.
- Monotone functions prevent loss of information.

For a complete lattice \mathbb{D}, consider systems:

$$
\begin{array}{lll}
\mathcal{I}[\text { start }] & \sqsupseteq d_{0} & \\
\mathcal{I}[v] & \sqsupseteq \llbracket k \rrbracket^{\sharp}(\mathcal{I}[u]) \quad k=\left(u,{ }_{-}, v\right) \quad \text { edge }
\end{array}
$$

where $d_{0} \in \mathbb{D}$ and all $\llbracket k \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}$ are monotonic ...
Wanted: MOP (Merge Over all Paths)

$$
\mathcal{I}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} d_{0} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Theorem
Kam, Ullman 1975
Assume \mathcal{I} is a solution of the constraint system. Then:

$$
\mathcal{I}[v] \sqsupseteq \mathcal{I}^{*}[v] \quad \text { for every } \quad v
$$

In particular: $\mathcal{I}[v] \sqsupseteq \llbracket \pi \rrbracket^{\sharp} d_{0} \quad$ for every π : start $\rightarrow^{*} v$

Disappointment: Are solutions of the constraint system just upper bounds?

Answer: In general: yes
Notable exception, all functions $\llbracket k \rrbracket^{\sharp}$ are distributive.
The function $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is called distributive, if
$f(\bigsqcup X)=\bigsqcup\{f x \mid x \in X\}$ for all $\emptyset \neq X \subseteq \mathbb{D}$;
Remark: If $f: \mathbb{D}_{1} \rightarrow \mathbb{D}_{2}$ is distributive, then it is also monotonic

Theorem
Kildall 1972
Assume all v are reachable from start.

Then: If all effects of edges $\llbracket k \rrbracket^{\sharp}$ are distributive, $\mathcal{I}^{*}[v]=\mathcal{I}[v]$ holds for all v.

Question: Are the edge effects of the Rules-of-Sign analysis distributive?

5 Constant Propagation

Goal: Execute as much of the code at compile-time as possible!
Example:

$$
\begin{aligned}
& x=7 ; \\
& \text { if }(x>0) \\
& M[A]=B ;
\end{aligned}
$$

Obviously, x has always the value 7
Thus, the memory access is always executed
Goal:

Obviously, x has always the value 7
Thus, the memory access is always executed
Goal:

Idea:

Design an analysis that for every program point u, determines the values that variables definitely have at u;

As a side effect, it also tells whether u can be reached at all

Idea:

Design an analysis that for every program point u, determines the values that variables definitely have at u;

As a side effect, it also tells whether u can be reached at all

We need to design a complete lattice for this analysis.
It has a nice relation to the operational semantics of our tiny programming language.

As in the case of the Rules-of-Signs analysis the complete lattice is constructed in two steps.
(1) The potential values of variables:

$$
\mathbb{Z}^{\top}=\mathbb{Z} \cup\{\top\} \quad \text { with } \quad x \sqsubseteq y \quad \text { iff } y=\top \text { or } x=y
$$

Caveat: \mathbb{Z}^{\top} is not a complete lattice in itself
(2) $\mathbb{D}=\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right)_{\perp}=\left(\right.$ Vars $\left.\rightarrow \mathbb{Z}^{\top}\right) \cup\{\perp\}$
// \perp denotes: "not reachable"

$$
\begin{array}{llll}
\text { with } \quad D_{1} \sqsubseteq D_{2} & \text { iff } & \perp=D_{1} & \text { or } \\
& & D_{1} x \sqsubseteq D_{2} x & \\
& (x \in \text { Vars })
\end{array}
$$

Remark: \mathbb{D} is a complete lattice

For every edge $k=\left(_, l a b,{ }_{-}\right)$, construct an effect function
$\llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}$ which simulates the concrete computation.
Obviously, $\quad \llbracket l a b \rrbracket^{\sharp} \perp=\perp \quad$ for all $\quad l a b$
Now let $\perp \neq D \in$ Vars $\rightarrow \mathbb{Z}^{\top}$.

Idea:

- We use D to determine the values of expressions.

Idea:

- We use D to determine the values of expressions.
- For some sub-expressions, we obtain \top

Idea:

- We use $\quad D$ to determine the values of expressions.
- For some sub-expressions, we obtain T

We must replace the concrete operators \square by abstract operators $\square^{\#}$ which can handle \top :

$$
a \square^{\sharp} b= \begin{cases}\top & \text { if } a=\top \text { or } b=\top \\ a \square b & \text { otherwise }\end{cases}
$$

Idea:

- We use $\quad D$ to determine the values of expressions.
- For some sub-expressions, we obtain T

We must replace the concrete operators $\quad \square$ by abstract operators $\square \sharp$ which can handle \top :

$$
a \square^{\sharp} b= \begin{cases}\top & \text { if } \quad a=\top \text { or } b=\top \\ a \square b & \text { otherwise }\end{cases}
$$

- The abstract operators allow to define an abstract evaluation of expressions:

$$
\llbracket e \rrbracket^{\sharp}:\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right) \rightarrow \mathbb{Z}^{\top}
$$

Abstract evaluation of expressions is like the concrete evaluation - but with abstract values and operators. Here:

$$
\begin{array}{ll}
\llbracket c \rrbracket^{\sharp} D & =c \\
\llbracket e_{1} \square e_{2} \rrbracket^{\sharp} D & =\llbracket e_{1} \rrbracket^{\sharp} D \square^{\sharp} \llbracket e_{2} \rrbracket^{\sharp} D
\end{array}
$$

... analogously for unary operators

Abstract evaluation of expressions is like the concrete evaluation - but with abstract values and operators. Here:

$$
\begin{array}{ll}
\llbracket c \rrbracket^{\sharp} D & =c \\
\llbracket e_{1} \square e_{2} \rrbracket^{\sharp} D & =\llbracket e_{1} \rrbracket^{\sharp} D \square^{\sharp} \llbracket e_{2} \rrbracket^{\sharp} D
\end{array}
$$

... analogously for unary operators

Example:

$$
\begin{aligned}
& D=\{x \mapsto 2, y \mapsto \top\} \\
& \llbracket x+7 \rrbracket^{\sharp} D=\llbracket x \rrbracket^{\sharp} D+^{\sharp} \llbracket 7 \rrbracket^{\sharp} D \\
&=2+^{\sharp} 7 \\
&=9 \\
& \llbracket x-y \rrbracket^{\sharp} D=2-\sharp \top \\
&=\top
\end{aligned}
$$

Thus, we obtain the following abstract edge effects $\llbracket l a b \rrbracket^{\sharp}$:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} D & =D \\
\llbracket \text { true }(e) \rrbracket^{\sharp} D & =\left\{\begin{array}{lll}
\perp & \text { if } \quad 0=\llbracket e \rrbracket^{\sharp} D & \text { definitely false } \\
D & \text { otherwise } & \text { possibly true }
\end{array}\right. \\
\llbracket \text { false }(e) \rrbracket^{\sharp} D & =\left\{\begin{array}{lll}
D & \text { if } \quad 0 \sqsubseteq \llbracket \llbracket \rrbracket^{\sharp} D & \text { possibly false } \\
\perp & \text { otherwise } & \text { definitely true }
\end{array}\right. \\
\llbracket x=e ; \rrbracket^{\sharp} D & =D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\} \\
\llbracket x=M[e\rceil ; \rrbracket^{\sharp} D & =D \oplus\{x \mapsto \top\} \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} D & =D
\end{array}
$$

... whenever $\quad D \neq \perp$

At start, we have $D_{\top}=\{x \mapsto \top \mid x \in$ Vars $\}$.

Example:

At start, we have $D_{\top}=\{x \mapsto \top \mid x \in$ Vars $\}$.
Example:

The abstract effects of edges $\llbracket k \rrbracket^{\sharp}$ are again composed to form the effects of paths $\pi=k_{1} \ldots k_{r}$ by:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp} \quad: \mathbb{D} \rightarrow \mathbb{D}
$$

Idea for Correctness:

Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation Δ between the concrete values and their descriptions with:

$$
x \Delta a_{1} \wedge a_{1} \sqsubseteq a_{2} \quad \Longrightarrow x \Delta a_{2}
$$

Concretization: $\quad \gamma a=\{x \mid x \Delta a\}$
returns the set of described values
(1) Values: $\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$

$$
z \Delta a \quad \text { iff } \quad z=a \vee a=\top
$$

Concretization:

$$
\gamma a=\left\{\begin{array}{lll}
\{a\} & \text { if } & a \sqsubset \top \\
\mathbb{Z} & \text { if } & a=\top
\end{array}\right.
$$

(1) Values: $\Delta \subseteq \mathbb{Z} \times \mathbb{Z}^{\top}$

$$
z \Delta a \quad \text { iff } \quad z=a \vee a=\top
$$

Concretization:

$$
\gamma a=\left\{\begin{array}{lll}
\{a\} & \text { if } & a \sqsubset \top \\
\mathbb{Z} & \text { if } & a=\top
\end{array}\right.
$$

(2) Variable Bindings: $\Delta \subseteq($ Vars $\rightarrow \mathbb{Z}) \times\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right)_{\perp}$

$$
\rho \Delta D \quad \text { iff } \quad D \neq \perp \wedge \rho x \sqsubseteq D x \quad(x \in \operatorname{Vars})
$$

Concretization:

$$
\gamma D= \begin{cases}\emptyset & \text { if } D=\perp \\ \{\rho \mid \forall x:(\rho x) \Delta(D x)\} & \text { otherwise }\end{cases}
$$

Example: $\quad\{x \mapsto 1, y \mapsto-7\} \Delta\{x \mapsto \top, y \mapsto-7\}$
(3) States:

$$
\begin{gathered}
\Delta \subseteq((\text { Vars } \rightarrow \mathbb{Z}) \times(\mathbb{N} \rightarrow \mathbb{Z})) \times\left(\text { Vars } \rightarrow \mathbb{Z}^{\top}\right)_{\perp} \\
(\rho, \mu) \Delta D \quad \text { iff } \quad \rho \Delta D
\end{gathered}
$$

Concretization:

$$
\gamma D= \begin{cases}\emptyset & \text { if } D=\perp \\ \{(\rho, \mu) \mid \forall x:(\rho x) \Delta(D x)\} & \text { otherwise }\end{cases}
$$

We show correctness:
(*) If $s \Delta D$ and $\llbracket \pi \rrbracket s$ is defined, then:

$$
(\llbracket \pi \rrbracket s) \Delta\left(\llbracket \pi \rrbracket^{\sharp} D\right)
$$

The abstract semantics simulates the concrete semantics In particular:

$$
\llbracket \pi \rrbracket s \in \gamma\left(\llbracket \pi \rrbracket^{\sharp} D\right)
$$

The abstract semantics simulates the concrete semantics In particular:

$$
\llbracket \pi \rrbracket s \in \gamma\left(\llbracket \pi \rrbracket^{\sharp} D\right)
$$

In practice, this means for example that $\quad D x=-7 \quad$ implies:

$$
\begin{aligned}
\rho^{\prime} x & =-7 \text { for all } \rho^{\prime} \in \gamma D \\
\Longrightarrow \rho_{1} x & =-7 \text { for } \quad\left(\rho_{1},,_{-}\right)=\llbracket \pi \rrbracket s
\end{aligned}
$$

The MOP-Solution:

$$
\mathcal{D}^{*}[v]=\bigsqcup\left\{\llbracket \pi \rrbracket^{\sharp} D_{\top} \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

where $\quad D_{\top} x=\top \quad(x \in$ Vars $)$.

In order to approximate the MOP, we use our constraint system

Example:

Example:

Example:

Example:

	1		2		3	
	x	y	x	y	x	y
0	\top	\top	\top	\top		
1	10	\top	10	\top		
2	10	1	\top	\top		
3	10	1	\top	\top		
4	10	10	\top	\top	dito	
5	9	10	\top	\top		
6		\perp	\top	\top		
7		\perp	\top	\top		

Concrete vs. Abstract Execution:

Although program and all initial values are given, abstract execution does not compute the result!

On the other hand, fixed-point iteration is guaranteed to terminate:
For n program points and m variables, we maximally need:
$n \cdot(m+1)$ rounds

Observation: The effects of edges are not distributive!

Counterexample: $\quad f=\llbracket x=x+y ; \rrbracket^{\sharp}$

$$
\text { Let } \quad \begin{aligned}
D_{1} & =\{x \mapsto 2, y \mapsto 3\} \\
D_{2} & =\{x \mapsto 3, y \mapsto 2\}
\end{aligned}
$$

Then $f D_{1} \sqcup f D_{2}=\{x \mapsto 5, y \mapsto 3\} \sqcup\{x \mapsto 5, y \mapsto 2\}$
$=\{x \mapsto 5, y \mapsto \top\}$
$\neq\{x \mapsto \top, y \mapsto \top\}$
$=f\{x \mapsto \mathrm{~T}, y \mapsto \mathrm{~T}\}$
$=f\left(D_{1} \sqcup D_{2}\right)$

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$
\mathcal{D}^{*}[v] \sqsubseteq \mathcal{D}[v]
$$

We conclude:

The least solution \mathcal{D} of the constraint system in general yields only an upper approximation of the MOP, i.e.,

$$
\mathcal{D}^{*}[v] \sqsubseteq \mathcal{D}[v]
$$

As an upper approximation, $\mathcal{D}[v]$ nonetheless describes the result of every program execution π that reaches v :

$$
(\llbracket \pi \rrbracket(\rho, \mu)) \quad \Delta \quad(\mathcal{D}[v])
$$

whenever $\llbracket \pi \rrbracket(\rho, \mu)$ is defined

6 Interval Analysis

Constant propagation attempts to determine values of variables.
However, variables may take on several values during program execution.
So, the value of a variable will often be unknown.
Next attempt: determine an interval enclosing all possible values that a variable may take on during program execution at a program point.

Example:

$$
\begin{aligned}
& \text { for }(i=0 ; i<42 ; i++) \\
& \quad \text { if }(0 \leq i \wedge i<42)\{ \\
& \qquad \begin{array}{c}
A_{1}=A+i \\
\quad M\left[A_{1}\right]=i \\
\}
\end{array} \\
& \quad / / \quad A \text { start address of an array } \\
& \text { // if-statement does array-bounds check }
\end{aligned}
$$

Obviously, the inner check is superfluous.

Idea 1:

Determine for every variable x the tightest possible interval of potential values.

Abstract domain:

$$
\mathbb{I}=\{[l, u] \mid l \in \mathbb{Z} \cup\{-\infty\}, u \in \mathbb{Z} \cup\{+\infty\}, l \leq u\}
$$

Partial order:

$$
\left[l_{1}, u_{1}\right] \sqsubseteq\left[l_{2}, u_{2}\right] \quad \text { iff } \quad l_{2} \leq l_{1} \wedge u_{1} \leq u_{2}
$$

Thus:

$$
\left[l_{1}, u_{1}\right] \sqcup\left[l_{2}, u_{2}\right]=\left[l_{1} \sqcap l_{2}, u_{1} \sqcup u_{2}\right]
$$

Thus:

$$
\begin{aligned}
& {\left[l_{1}, u_{1}\right] \sqcup\left[l_{2}, u_{2}\right]=\left[l_{1} \sqcap l_{2}, u_{1} \sqcup u_{2}\right]} \\
& {\left[l_{1}, u_{1}\right] \sqcap\left[l_{2}, u_{2}\right]=\left[l_{1} \sqcup l_{2}, u_{1} \sqcap u_{2}\right] \quad \text { whenever }\left(l_{1} \sqcup l_{2}\right) \leq\left(u_{1} \sqcap u_{2}\right)}
\end{aligned}
$$

Caveat:

$\rightarrow \quad \mathbb{I} \quad$ is not a complete lattice,
$\rightarrow \quad \mathbb{I}$ has infinite ascending chains, e.g.,

$$
[0,0] \sqsubset[0,1] \sqsubset[-1,1] \sqsubset[-1,2] \sqsubset \ldots
$$

Caveat:

$\rightarrow \quad \mathbb{I} \quad$ is not a complete lattice,
$\rightarrow \quad \mathbb{I}$ has infinite ascending chains, e.g.,

$$
[0,0] \sqsubset[0,1] \sqsubset[-1,1] \sqsubset[-1,2] \sqsubset \ldots
$$

Description Relation:

$$
z \Delta[l, u] \quad \text { iff } \quad l \leq z \leq u
$$

Concretization:

$$
\gamma[l, u]=\{z \in \mathbb{Z} \mid l \leq z \leq u\}
$$

Example:

$$
\begin{aligned}
\gamma[0,7] & =\{0, \ldots, 7\} \\
\gamma[0, \infty] & =\{0,1,2, \ldots,\}
\end{aligned}
$$

Computing with intervals:

Interval Arithmetic.

Addition:

$$
\begin{aligned}
{\left[l_{1}, u_{1}\right]++^{\sharp}\left[l_{2}, u_{2}\right] } & =\left[l_{1}+l_{2}, u_{1}+u_{2}\right] \quad \text { where } \\
-\infty++_{-} & =-\infty \\
+\infty++_{-} & =+\infty \\
& / /-\infty+\infty \quad \text { cannot occur }
\end{aligned}
$$

Negation:

$$
-^{\sharp}[l, u]=[-u,-l]
$$

Multiplication:

$$
\begin{aligned}
{\left[l_{1}, u_{1}\right] *^{\#}\left[l_{2}, u_{2}\right] } & =[a, b] \quad \text { where } \\
a & =l_{1} l_{2} \sqcap l_{1} u_{2} \sqcap u_{1} l_{2} \sqcap u_{1} u_{2} \\
b & =l_{1} l_{2} \sqcup l_{1} u_{2} \sqcup u_{1} l_{2} \sqcup u_{1} u_{2}
\end{aligned}
$$

Example:

$$
\begin{aligned}
{[0,2] *^{\#}[3,4] } & =[0,8] \\
{[-1,2] *^{\#}[3,4] } & =[-4,8] \\
{[-1,2] *^{\#}[-3,4] } & =[-6,8] \\
{[-1,2] *^{\#}[-4,-3] } & =[-8,4]
\end{aligned}
$$

Division:

$$
\left[l_{1}, u_{1}\right] / \sharp\left[l_{2}, u_{2}\right]=[a, b]
$$

- If 0 is not contained in the interval of the denominator, then:

$$
\begin{aligned}
a & =l_{1} / l_{2} \sqcap l_{1} / u_{2} \sqcap u_{1} / l_{2} \sqcap u_{1} / u_{2} \\
b & =l_{1} / l_{2} \sqcup l_{1} / u_{2} \sqcup u_{1} / l_{2} \sqcup u_{1} / u_{2}
\end{aligned}
$$

- If: $\quad l_{2} \leq 0 \leq u_{2}$, we define:

$$
[a, b]=[-\infty,+\infty]
$$

Equality:

$$
\left[l_{1}, u_{1}\right]==^{\sharp}\left[l_{2}, u_{2}\right]= \begin{cases}\text { true } & \text { if } l_{1}=u_{1}=l_{2}=u_{2} \\ \text { false } & \text { if } u_{1}<l_{2} \vee u_{2}<l_{1} \\ \top & \text { otherwise }\end{cases}
$$

Equality:

$$
\left[l_{1}, u_{1}\right]==^{\sharp}\left[l_{2}, u_{2}\right]= \begin{cases}\text { true } & \text { if } l_{1}=u_{1}=l_{2}=u_{2} \\ \text { false } & \text { if } u_{1}<l_{2} \vee u_{2}<l_{1} \\ \top & \text { otherwise }\end{cases}
$$

Example:

$$
\begin{aligned}
{[42,42]==^{\sharp}[42,42] } & =\text { true } \\
{[0,7]==^{\sharp}[0,7] } & =\top \\
{[1,2]==^{\sharp}[3,4] } & =\text { false }
\end{aligned}
$$

Less:

$$
\left[l_{1}, u_{1}\right]<^{\sharp}\left[l_{2}, u_{2}\right]= \begin{cases}\text { true } & \text { if } u_{1}<l_{2} \\ \text { false } & \text { if } u_{2} \leq l_{1} \\ \top & \text { otherwise }\end{cases}
$$

Less:

$$
\left[l_{1}, u_{1}\right]<^{\sharp}\left[l_{2}, u_{2}\right]= \begin{cases}\text { true } & \text { if } u_{1}<l_{2} \\ \text { false } & \text { if } u_{2} \leq l_{1} \\ \top & \text { otherwise }\end{cases}
$$

Example:

$$
\begin{aligned}
{[1,2]<^{\sharp}[9,42] } & =\text { true } \\
{[0,7]<^{\sharp}[0,7] } & =\top \\
{[3,4]<^{\sharp}[1,2] } & =\text { false }
\end{aligned}
$$

By means of \mathbb{I} we construct the complete lattice:

$$
\mathbb{D}_{\mathbb{I}}=(\text { Vars } \rightarrow \mathbb{I})_{\perp}
$$

Description Relation:

$$
\rho \Delta D \quad \text { iff } \quad D \neq \perp \quad \wedge \quad \forall x \in \operatorname{Vars}:(\rho x) \Delta(D x)
$$

The abstract evaluation of expressions is defined analogously to constant propagation. We have:

$$
(\llbracket e \rrbracket \rho) \Delta\left(\llbracket e \rrbracket^{\sharp} D\right) \quad \text { whenever } \quad \rho \Delta D
$$

The Effects of Edges:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} D & =D \\
\llbracket x=e ; \rrbracket^{\sharp} D & =D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\} \\
\llbracket x=M[e] ; \rrbracket^{\sharp} D & =D \oplus\{x \mapsto \mathrm{~T}\} \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} D= & D \\
\llbracket \text { true }(e) \rrbracket^{\sharp} D= & \left\{\begin{array}{llr}
\perp & \text { if } & \text { definite } \\
D & \text { otherwise } & \text { possi }
\end{array}\right. \\
\begin{array}{lll}
\llbracket \text { false }(e) \rrbracket^{\sharp} D & =\left\{\begin{array}{lll}
D & \text { if } & \text { possibl } \\
\perp & \text { otherwise } & \text { definite }
\end{array}\right. \\
& \quad . . \text { given that } & D \neq \perp
\end{array}
\end{array}
$$

Better Exploitation of Conditions:

$$
\llbracket \operatorname{Pos}(e) \rrbracket^{\sharp} D= \begin{cases}\perp & \text { if } \quad \text { false }=\llbracket \llbracket \rrbracket^{\sharp} D \\ D_{1} & \text { otherwise }\end{cases}
$$

where:

$$
D_{1} \quad= \begin{cases}D \oplus\left\{x \mapsto(D x) \sqcap\left(\llbracket e_{1} \rrbracket^{\sharp} D\right)\right\} & \text { if } e \equiv x==e_{1} \\ D \oplus\{x \mapsto(D x) \sqcap[-\infty, u]\} & \text { if } e \equiv x \leq e_{1}, \llbracket e_{1} \rrbracket^{\sharp} D=\left[\left[_{-}, u\right]\right. \\ D \oplus\{x \mapsto(D x) \sqcap[l, \infty]\} & \text { if } e \equiv x \geq e_{1}, \llbracket e_{1} \rrbracket^{\sharp} D=\left[l,,_{-}\right]\end{cases}
$$

Better Exploitation of Conditions (cont.):

$$
\llbracket \operatorname{Neg}(e) \rrbracket^{\sharp} D= \begin{cases}\perp & \text { if } \quad \text { false } \nsubseteq \llbracket \llbracket \rrbracket^{\sharp} D \\ D_{1} & \text { otherwise }\end{cases}
$$

where:

$$
D_{1}= \begin{cases}\left.D \oplus\left\{x \mapsto(D x) \sqcap\left(\llbracket e_{1}\right]^{\sharp} D\right)\right\} & \text { if } e \equiv x \neq e_{1} \\ D \oplus\{x \mapsto(D x) \sqcap[-\infty, u]\} & \text { if } e \equiv x>e_{1}, \llbracket e_{1} \rrbracket^{\sharp} D=\left[L_{-}, u\right] \\ D \oplus\{x \mapsto(D x) \sqcap[l, \infty]\} & \text { if } e \equiv x<e_{1}, \llbracket e_{1} \rrbracket^{\sharp} D=[l,,]\end{cases}
$$

Example:

Problem:

$\rightarrow \quad$ The solution can be computed with RR-iteration after about 42 rounds.
$\rightarrow \quad$ On some programs, iteration may never terminate.

Idea: Widening

Accelerate the iteration - at the cost of precision

Formalization of the Approach:

Let $\quad x_{i} \sqsupseteq f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n$
denote a system of constraints over \mathbb{D}
Define an accumulating iteration:

$$
\begin{equation*}
x_{i}=x_{i} \sqcup f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{2}
\end{equation*}
$$

We obviously have:
(a) $\quad \underline{x}$ is a solution of (1) iff \underline{x} is a solution of (2).
(b) The function $G: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ with $G\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right), \quad y_{i}=x_{i} \sqcup f_{i}\left(x_{1}, \ldots, x_{n}\right)$ is increasing, i.e., $\underline{x} \sqsubseteq G \underline{x}$ for all $\underline{x} \in \mathbb{D}^{n}$.
(c) The sequence $G^{k} \perp, \quad k \geq 0, \quad$ is an ascending chain:

$$
\perp \sqsubseteq G \perp \sqsubseteq \ldots \sqsubseteq G^{k} \perp \sqsubseteq \ldots
$$

(d) If $G^{k} \perp=G^{k+1} \perp=\underline{y}$, then $\underline{y} \quad$ is a solution of (1).
(e) If \mathbb{D} has infinite strictly ascending chains, then (d) is not yet sufficient ...
but: we could consider the modified system of equations:

$$
\begin{equation*}
x_{i}=x_{i} \sqcup f_{i}\left(x_{1}, \ldots, x_{n}\right), \quad i=1, \ldots, n \tag{3}
\end{equation*}
$$

for a binary operation widening:

$$
\sqcup: \mathbb{D}^{2} \rightarrow \mathbb{D} \quad \text { with } \quad v_{1} \sqcup v_{2} \sqsubseteq v_{1} \sqcup v_{2}
$$

(RR)-iteration for (3) still will compute a solution of (1)
... for Interval Analysis:

- The complete lattice is: $\quad \mathbb{D}_{\mathbb{I}}=(\text { Vars } \rightarrow \mathbb{I})_{\perp}$
- the widening $\quad \cup$ is defined by:

$$
\begin{aligned}
\perp \sqcup D=D \sqcup \perp=D & \text { and for } \quad D_{1} \neq \perp \neq D_{2}: \\
\left(D_{1} \sqcup D_{2}\right) x & =\left(D_{1} x\right) \sqcup\left(D_{2} x\right) \quad \text { where } \\
{\left[l_{1}, u_{1}\right] \sqcup\left[l_{2}, u_{2}\right] } & =[l, u] \quad \text { with } \\
l & = \begin{cases}l_{1} & \text { if } l_{1} \leq l_{2} \\
-\infty & \text { otherwise }\end{cases} \\
u & = \begin{cases}u_{1} & \text { if } u_{1} \geq u_{2} \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

$\Longrightarrow \quad \sqcup \quad$ is not commutative !!!

Example:

$$
\begin{aligned}
{[0,2] \sqcup[1,2] } & =[0,2] \\
{[1,2] \sqcup[0,2] } & =[-\infty, 2] \\
{[1,5] \sqcup[3,7] } & =[1,+\infty]
\end{aligned}
$$

$\rightarrow \quad$ Widening returns larger values more quickly.
$\rightarrow \quad$ It should be constructed in such a way that termination of iteration is guaranteed.
\rightarrow For interval analysis, widening bounds the number of iterations by:

$$
\# \text { points } \cdot(1+2 \cdot \# \text { Vars })
$$

Conclusion:

- In order to determine a solution of (1) over a complete lattice with infinite ascending chains, we define a suitable widening and then solve (3)
- Caveat: The construction of suitable widenings is a dark art !!!

Often $\quad \sqcup \quad$ is chosen dynamically during iteration such that
$\rightarrow \quad$ the abstract values do not get too complicated;
$\rightarrow \quad$ the number of updates remains bounded ...

Our Example:

Our Example:

7 Removing superfluous computations

A computation may be superfluous because

- the result is already available, \longrightarrow available-expression analysis, or
- the result is not needed \longrightarrow live-variable analysis.

7.1 Redundant computations

Idea:

If an expression at a program point is guaranteed to be computed to the value it had before, then
$\rightarrow \quad$ store this value after the first computation;
$\rightarrow \quad$ replace every further computation through a look-up
Question to be answered by static analysis: Is an expression available?

Problem: Identify sources of redundant computations!

Example:

$$
\begin{aligned}
z= & 1 \\
y= & M[17] ; \\
A: \quad & x_{1}=y+z ; \\
& \cdots \\
B: \quad & x_{2}=y+z ;
\end{aligned}
$$

B is a redundant computation of the value of $y+z$, if
(1) A is always executed before B; and
(2) y and z at B have the same values as at A

Situation: The value of $x+y$ is computed at program point u

and a computation along path π reaches v where it evaluates again $x+y$

If x and y have not been modified in π, then evaluation of $x+y$ at v returns the same value as evaluation at u.

This property can be checked at every edge in π.

Situation: The value of $x+y$ is computed at program point u
$x+y$

and a computation along path π reaches v where it evaluates again $x+y$
\ldots. If x and y have not been modified in π, then evaluation of $x+y$ at v is known to return the same value as evaluation at u

This property can be checked at every edge in π.
More efficient: Do this check for all expressions occurring in the program in parallel.

Assume that the expressions $A=\left\{e_{1}, \ldots, e_{r}\right\}$ are available at u.

Situation: The value of $x+y$ is computed at program point u $x+y$

and a computation along path π reaches v where it evaluates again $x+y$
\ldots... If x and y have not been modified in π, then evaluation of $x+y$ at v must return the same value as evaluation at u.

This property can be checked at every edge in π.

More efficient: Do this check for all expressions occurring in the program in parallel.

Assume that the expressions $A=\left\{e_{1}, \ldots, e_{r}\right\}$ are available at u.
Every edge k transforms this set into a set $\quad \llbracket k \rrbracket^{\sharp} A$ of expressions whose values are available after execution of k.
$\llbracket k \rrbracket^{\sharp} A$ is the (abstract) edge effect associated with k

These edge effects can be composed to the effect of a path $\pi=k_{1} \ldots k_{r}$:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp}
$$

These edge effects can be composed to the effect of a path $\pi=k_{1} \ldots k_{r}$:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp}
$$

The effect $\llbracket k \rrbracket^{\sharp}$ of an edge $k=(u, l a b, v)$ only depends on the label lab, i.e., $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp}$

These edge effects can be composed to the effect of a path $\pi=k_{1} \ldots k_{r}$:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp}
$$

The effect $\llbracket k \rrbracket^{\sharp}$ of an edge $k=(u, l a b, v)$ only depends on the label lab, i.e., $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp} \quad$ where:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} A & =A \\
\llbracket \operatorname{true}(e) \rrbracket^{\sharp} A & =\llbracket \text { false }(e) \rrbracket^{\sharp} A \quad=A \cup\{e\} \\
\llbracket x=e ; \rrbracket^{\sharp} A & =(A \cup\{e\}) \backslash \operatorname{Expr}_{x} \quad \text { where } \\
& \operatorname{Expr}_{x} \text { all expressions that contain } x
\end{array}
$$

$$
\begin{aligned}
& \llbracket x=M[e] ; \rrbracket^{\sharp} A=(A \cup\{e\}) \backslash \operatorname{Expr}_{x} \\
& \llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} A=A \cup\left\{e_{1}, e_{2}\right\}
\end{aligned}
$$

$\rightarrow \quad$ An expression is available at v if it is available along all paths π to v.
$\rightarrow \quad$ For every such path π, the analysis determines the set of expressions that are available along π.
$\rightarrow \quad$ Initially at program start, nothing is available.
$\rightarrow \quad$ The analysis computes the intersection of the availability sets as safe information.
\Longrightarrow For each node v, we need the set:

$$
\mathcal{A}[v]=\bigcap\left\{\llbracket \pi \rrbracket^{\sharp} \emptyset \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

How does a compiler exploit this information?
Transformation UT (unique temporaries):
We provide a novel register T_{e} as storage for the values of e :

Transformation UT (unique temporaries):

We provide novel registers T_{e} as storage for the value of e :

... analogously for $\quad R=M[e] ; \quad$ and $\quad M\left[e_{1}\right]=e_{2} ;$.

Transformation AEE (available expression elimination):

If e is available at program point u, then e need not be re-evaluated:

We replace the assignment with Nop.

Example:

$$
\begin{aligned}
x & =y+3 ; \\
x & =7 ; \\
z & =y+3 ;
\end{aligned}
$$

Example:

Example:

Example:

Warning:

Transformation UT is only meaningful for assignments $x=e$; where:

$$
\begin{array}{ll}
\rightarrow \quad x \notin \operatorname{Vars}(e) ; & \text { why? } \\
\rightarrow \quad e \notin \operatorname{Vars} ; & \text { why? } \\
\rightarrow \quad \text { the evaluation of } e \text { is non-trivial; } & \text { why? }
\end{array}
$$

Warning:

Transformation UT is only meaningful for assignments $x=e$; where:
$\rightarrow \quad x \notin \operatorname{Vars}(e)$; otherwise e is not available afterwards.
$\rightarrow \quad e \notin$ Vars; otherwise values are shuffled around
$\rightarrow \quad$ the evaluation of e is non-trivial; otherwise the efficiency of the code is decreased.

Open question ...

Question:

How do we compute $\mathcal{A}[u]$ for every program point u ?

Question:

How can we compute $\mathcal{A}[u]$ for every program point? u

We collect all constraints on the values of $\mathcal{A}[u]$ into a system of constraints:

$$
\begin{array}{lll}
\mathcal{A}[\text { start }] & \subseteq \emptyset & \\
\mathcal{A}[v] & \subseteq \llbracket k \rrbracket^{\sharp}(\mathcal{A}[u]) & k=\left(u,_{-}, v\right) \quad \text { edge }
\end{array}
$$

Why \subseteq ?

Question:

How can we compute $\mathcal{A}[u]$ for every program point? u

Idea:

We collect all constraints on the values of $\mathcal{A}[u]$ into a system of constraints:

$$
\begin{array}{llll}
\mathcal{A}[\text { start }] & \subseteq \emptyset & \\
\mathcal{A}[v] & \subseteq \llbracket k \rrbracket^{\sharp}(\mathcal{A}[u]) & k=\left(u,_{,}, v\right) & \text { edge }
\end{array}
$$

Why \subseteq ?
Then combine all constraints for each variable v by applying the least-upper-bound operator \longrightarrow

$$
\mathcal{A}[v] \subseteq \bigcap\left\{\llbracket k \rrbracket^{\sharp}(\mathcal{A}[u]) \mid k=\left(u,_{-}, v\right) \text { edge }\right\}
$$

Wanted:

- a greatest solution (why greatest?)
- an algorithm that computes this solution

Example:

Wanted:

- a greatest solution (why greatest?)
- an algorithm that computes this solution

Example:

Wanted:

- a greatest solution (why greatest?)
- an algorithm that computes this solution

Example:

$$
\begin{aligned}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq(\mathcal{A}[0] \cup\{1\}) \backslash \operatorname{Exp}_{y} \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4]
\end{aligned}
$$

Wanted:

- a greatest solution (why greatest?)
- an algorithm that computes this solution

Example:

$$
\begin{aligned}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq(\mathcal{A}[0] \cup\{1\}) \backslash \text { Exp }_{y} \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4] \\
\mathcal{A}[2] & \subseteq \mathcal{A}[1] \cup\{x>1\}
\end{aligned}
$$

Wanted:

- a greatest solution (why greatest?)
- an algorithm that computes this solution

Example:

$$
\begin{aligned}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq(\mathcal{A}[0] \cup\{1\}) \backslash \operatorname{Expr}_{y} \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4] \\
\mathcal{A}[2] & \subseteq \mathcal{A}[1] \cup\{x>1\} \\
\mathcal{A}[3] & \subseteq(\mathcal{A}[2] \cup\{x * y\}) \backslash \operatorname{Expr}_{y}
\end{aligned}
$$

Wanted:

- a greatest solution (why greatest?)
- an algorithm that computes this solution

Example:

$$
\begin{aligned}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq(\mathcal{A}[0] \cup\{1\}) \backslash \text { Expr }_{y} \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4] \\
\mathcal{A}[2] & \subseteq \mathcal{A}[1] \cup\{x>1\} \\
\mathcal{A}[3] & \subseteq(\mathcal{A}[2] \cup\{x * y\}) \backslash \text { Expr }_{y} \\
\mathcal{A}[4] & \subseteq(\mathcal{A}[3] \cup\{x-1\}) \backslash \text { Expr }_{x}
\end{aligned}
$$

Wanted:

- a greatest solution (why greatest?)
- an algorithm that computes this solution

Example:

$$
\begin{aligned}
\mathcal{A}[0] & \subseteq \emptyset \\
\mathcal{A}[1] & \subseteq(\mathcal{A}[0] \cup\{1\}) \backslash \text { Expr }_{y} \\
\mathcal{A}[1] & \subseteq \mathcal{A}[4] \\
\mathcal{A}[2] & \subseteq \mathcal{A}[1] \cup\{x>1\} \\
\mathcal{A}[3] & \subseteq(\mathcal{A}[2] \cup\{x * y\}) \backslash \operatorname{Expr}_{y} \\
\mathcal{A}[4] & \subseteq(\mathcal{A}[3] \cup\{x-1\}) \backslash \operatorname{Expr}_{x} \\
\mathcal{A}[5] & \subseteq \mathcal{A}[1] \cup\{x>1\}
\end{aligned}
$$

Wanted:

- a greatest solution,
- an algorithm that computes this solution.

Example:

Solution:

$$
\begin{aligned}
\mathcal{A}[0] & =\emptyset \\
\mathcal{A}[1] & =\{1\} \\
\mathcal{A}[2] & =\{1, x>1\} \\
\mathcal{A}[3] & =\{1, x>1\} \\
\mathcal{A}[4] & =\{1\} \\
\mathcal{A}[5] & =\{1, x>1\}
\end{aligned}
$$

Observation:

- Again, the possible values for $\mathcal{A}[u]$ form a complete lattice:

$$
\mathbb{D}=2^{\text {Expr }} \quad \text { with } \quad B_{1} \sqsubseteq B_{2} \quad \text { iff } \quad B_{1} \supseteq B_{2}
$$

- The order on the lattice elements indicates what is better information, more available expressions may allow more optimizations

Observation:

- Again, the possible values for $\mathcal{A}[u]$ form a complete lattice:

$$
\mathbb{D}=2^{\text {Expr }} \quad \text { with } \quad B_{1} \sqsubseteq B_{2} \quad \text { iff } \quad B_{1} \supseteq B_{2}
$$

- The order on the lattice elements indicates what is better information, more available expressions may allow more optimizations
- The functions $\llbracket k \rrbracket^{\sharp}: \mathbb{D} \rightarrow \mathbb{D}$ have the form $\quad f_{i} x=a_{i} \cap x \cup b_{i}$.

They are called gen/kill functions— \cap kills, \cup generates.

- they are monotonic, i.e.,

$$
\llbracket k \rrbracket^{\sharp}\left(B_{1}\right) \sqsubseteq \llbracket k \rrbracket^{\sharp}\left(B_{2}\right) \quad \text { iff } \quad B_{1} \sqsubseteq B_{2}
$$

The operations "○", " $\sqcup "$ and " $\square "$ can be explicitly defined by:

$$
\begin{aligned}
& \left(f_{2} \circ f_{1}\right) x=a_{1} \cap a_{2} \cap x \cup a_{2} \cap b_{1} \cup b_{2} \\
& \left(f_{1} \sqcup f_{2}\right) x=\left(a_{1} \cup a_{2}\right) \cap x \cup b_{1} \cup b_{2} \\
& \left(f_{1} \sqcap f_{2}\right) x=\left(a_{1} \cup b_{1}\right) \cap\left(a_{2} \cup b_{2}\right) \cap x \cup b_{1} \cap b_{2}
\end{aligned}
$$

7.2 Removing Assignments to Dead Variables

Example:

$$
\begin{array}{ll}
1: & x=y+2 \\
2: & y=5 \\
3: & x=y+3 ;
\end{array}
$$

The value of x at program points 1,2 is overwritten before it can be used.

Therefore, we call the variable x dead at these program points.

Note:

$\rightarrow \quad$ Assignments to dead variables can be removed.
$\rightarrow \quad$ Such inefficiencies may originate from other transformations.

Note:

$\rightarrow \quad$ Assignments to dead variables can be removed.
$\rightarrow \quad$ Such inefficiencies may originate from other transformations.

Formal Definition:

The variable x is called live at u along a path π starting at u
if $\pi \quad$ can be decomposed into $\quad \pi=\pi_{1} k \pi_{2} \quad$ such that:

- $\quad k$ is a use of x and
- π_{1} does not contain a definition of x.

Thereby, the set of all defined or used variables at an edge $k=\left({ }_{-}, l a b,{ }_{-}\right) \quad$ is defined by

$l a b$	used	defined
$;$	\emptyset	\emptyset
true (e)	Vars (e)	\emptyset
false (e)	Vars (e)	\emptyset
$x=e ;$	Vars (e)	$\{x\}$
$x=M[e] ;$	$\operatorname{Vars}(e)$	$\{x\}$
$M\left[e_{1}\right]=e_{2} ;$	$\operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)$	\emptyset

A variable x which is not live at u along π is called dead at u along π.

Example:

$$
\xrightarrow{\text { (0) }} \xrightarrow{x=y+2 ;} \quad y=5 ; \quad x=y+3 ;
$$

Then we observe:

	live	dead
0	$\{y\}$	$\{x\}$
1	\emptyset	$\{x, y\}$
2	$\{y\}$	$\{x\}$
3	\emptyset	$\{x, y\}$

The variable x is live at u if x is live at u along some path to the exit. Otherwise, x is called dead at u.

The variable x is live at u if x is live at u along some path to the exit. Otherwise, x is called dead at u.

Question:

How can the sets of all dead/live variables be computed for every u ?

The variable x is live at u if x is live at u along some path to the exit. Otherwise, x is called dead at u.

Question:

How can the sets of all dead/live variables be computed for every u ?

Idea:

For every edge $k=\left(u,{ }_{-}, v\right)$, define a function $\llbracket k \rrbracket^{\sharp}$ which transforms the set of variables that are live at v into the set of variables that are live at u.

Note: Edge transformers go "backwards"!

Let $\mathbb{L}=2^{\text {Vars }}$.
For $\quad k=\left(_, l a b,{ }_{-}\right)$, define $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp} \quad$ by:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} L & =L \\
\llbracket \operatorname{true}(e) \rrbracket^{\sharp} L & =\llbracket \operatorname{false}(e) \rrbracket^{\sharp} L=L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket x=M[e] ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

Let $\mathbb{L}=2^{\text {Vars }}$.
For $\quad k=\left(_, l a b,{ }_{-}\right)$, define $\quad \llbracket k \rrbracket^{\sharp}=\llbracket l a b \rrbracket^{\sharp} \quad$ by:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} L & =L \\
\llbracket \operatorname{true}(e) \rrbracket^{\sharp} L & =\llbracket \text { false }(e) \rrbracket^{\sharp} L=L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket x=M[e\rceil ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \operatorname{Vars}(e) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

$\llbracket k \rrbracket^{\sharp} \quad$ can again be composed to the effects of $\llbracket \pi \rrbracket^{\sharp}$ of paths $\pi=k_{1} \ldots k_{r} \quad$ by:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{1} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{r} \rrbracket^{\sharp}
$$

We verify that these definitions are meaningful

A variable is live at a program point u if there is at least one path from u to program exit on which it is live.

The set of variables which are live at u therefore is given by:

$$
\mathcal{L}^{*}[u]=\bigcup\left\{\llbracket \pi \rrbracket^{\sharp} \emptyset \mid \pi: u \rightarrow^{*} \text { stop }\right\}
$$

No variables are assumed to be live at program exit.

As partial order for \mathbb{L} we use $\sqsubseteq=\subseteq$. why?
So, the least upper bound is \bigcup. why?

Transformation DE (Dead assignment Elimination):

Correctness Proof:

$\rightarrow \quad$ Correctness of the effects of edges: If L is the set of variables which are live at the exit of the path π, then $\llbracket \pi \rrbracket^{\sharp} L$ is the set of variables which are live at the beginning of π
$\rightarrow \quad$ Correctness of the transformation along a path: If the value of a variable is accessed, this variable is necessarily live. The value of dead variables thus is irrelevant
$\rightarrow \quad$ Correctness of the transformation: In any execution of the transformed programs, the live variables always receive the same values

Computation of the sets $\mathcal{L}^{*}[u]:$

(1) Collecting constraints:

$$
\begin{array}{ll}
\mathcal{L}[\text { stop }] & \supseteq \emptyset \\
\mathcal{L}[u] & \supseteq \llbracket k \rrbracket^{\sharp}(\mathcal{L}[v]) \quad k=\left(u,_{-}, v\right) \quad \text { edge }
\end{array}
$$

(2) Solving the constraint system by means of RR iteration.

Since \mathbb{L} is finite, the iteration will terminate
(3) If the exit is (formally) reachable from every program point, then the least solution \mathcal{L} of the constraint system equals $\quad \mathcal{L}^{*}$ since all $\llbracket k \rrbracket^{\sharp}$ are distributive

Computation of the sets $\mathcal{L}^{*}[u]:$

(1) Collecting constraints:

$$
\begin{array}{ll}
\mathcal{L}[\text { stop }] & \supseteq \emptyset \\
\mathcal{L}[u] & \supseteq \llbracket k \rrbracket^{\sharp}(\mathcal{L}[v]) \quad k=\left(u,_{-}, v\right) \quad \text { edge }
\end{array}
$$

(2) Solving the constraint system by means of RR iteration.

Since \mathbb{L} is finite, the iteration will terminate
(3) If the exit is (formally) reachable from every program point, then the least solution \mathcal{L} of the constraint system equals
$\mathcal{L}^{*} \quad$ since all $\llbracket k \rrbracket^{\sharp}$ are distributive.

Note: The information is propagated backwards!

Example:

$$
\begin{aligned}
\mathcal{L}[0] & \supseteq(\mathcal{L}[1] \backslash\{x\}) \cup\{I\} \\
\mathcal{L}[1] & \supseteq \mathcal{L}[2] \backslash\{y\} \\
\mathcal{L}[2] & \supseteq(\mathcal{L}[6] \cup\{x\}) \cup(\mathcal{L}[3] \cup\{x\}) \\
\mathcal{L}[3] & \supseteq(\mathcal{L}[4] \backslash\{y\}) \cup\{x, y\} \\
\mathcal{L}[4] & \supseteq(\mathcal{L}[5] \backslash\{x\}) \cup\{x\} \\
\mathcal{L}[5] & \supseteq \mathcal{L}[2] \\
\mathcal{L}[6] & \supseteq \mathcal{L}[7] \cup\{y, R\} \\
\mathcal{L}[7] & \supseteq \emptyset
\end{aligned}
$$

Example:

The left-hand side of no assignment is dead

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead

Caveat:

Removal of assignments to dead variables may kill further variables:

The left-hand side of no assignment is dead

Caveat:

Removal of assignments to dead variables may kill further variables:

Re-analyzing the program is inconvenient

Idea: Analyze true liveness!

x is called truly live at u along a path π, either
if $\quad \pi \quad$ can be decomposed into $\quad \pi=\pi_{1} k \pi_{2} \quad$ such that:

- $\quad k$ is a true use of x;
- π_{1} does not contain any definition of x.

The set of truly used variables at an edge $\quad k=\left({ }_{-}, l a b, v\right) \quad$ is defined as:

$l a b$	truly used
$;$	\emptyset
$\operatorname{true}(e)$	$\operatorname{Vars}(e)$
false (e)	Vars (e)
$x=e ;$	$\operatorname{Vars}(e) \quad(*)$
$x=M[e] ;$	$\operatorname{Vars}(e) \quad(*)$
$M\left[e_{1}\right]=e_{2} ;$	$\operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)$

(*) - given that x is truly live at v

Example:

Example:

Example:

Example:

Example:

The Effects of Edges:

$$
\begin{array}{ll}
\llbracket ; \mathbb{\sharp}^{\sharp} L & =L \\
\llbracket \operatorname{true}(e) \rrbracket^{\sharp} L & =\llbracket \text { false }(e) \rrbracket^{\sharp} L=L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup \quad \operatorname{Vars}(e) \\
\llbracket x=M[e] ; \mathbb{\rrbracket}^{\sharp} L & =(L \backslash\{x\}) \cup \quad \operatorname{Vars}(e) \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

The Effects of Edges:

$$
\begin{array}{ll}
\llbracket ; \mathbb{\rrbracket}^{\sharp} L & =L \\
\llbracket \operatorname{true}(e) \rrbracket^{\sharp} L & =\llbracket \text { false }(e) \rrbracket^{\sharp} L=L \cup \operatorname{Vars}(e) \\
\llbracket x=e ; \rrbracket^{\sharp} L & =(L \backslash\{x\}) \cup(x \in L) ? \operatorname{Vars}(e): \emptyset \\
\llbracket x=M[e] ; \mathbb{\rrbracket}^{\sharp} L & =(L \backslash\{x\}) \cup(x \in L) ? \operatorname{Vars}(e): \emptyset \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} L & =L \cup \operatorname{Vars}\left(e_{1}\right) \cup \operatorname{Vars}\left(e_{2}\right)
\end{array}
$$

Note:

- The effects of edges for truly live variables are more complicated than for live variables
- Nonetheless, they are distributive !!

Note:

- The effects of edges for truly live variables are more complicated than for live variables
- Nonetheless, they are distributive !!

To see this, consider for $\mathbb{D}=2^{U}, \quad f y=(u \in y) ? b: \emptyset \quad$ We verify:

$$
\begin{aligned}
f\left(y_{1} \cup y_{2}\right) & =\left(u \in y_{1} \cup y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1} \vee u \in y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1}\right) ? b: \emptyset \cup\left(u \in y_{2}\right) ? b: \emptyset \\
& =f y_{1} \cup f y_{2}
\end{aligned}
$$

Note:

- The effects of edges for truly live variables are more complicated than for live variables
- Nonetheless, they are distributive !!

To see this, consider for $\quad \mathbb{D}=2^{U}, \quad f y=(u \in y) ? b: \emptyset \quad$ We verify:

$$
\begin{aligned}
f\left(y_{1} \cup y_{2}\right) & =\left(u \in y_{1} \cup y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1} \vee u \in y_{2}\right) ? b: \emptyset \\
& =\left(u \in y_{1}\right) ? b: \emptyset \cup\left(u \in y_{2}\right) ? b: \emptyset \\
& =f y_{1} \cup f y_{2}
\end{aligned}
$$

\Longrightarrow the constraint system yields the MOP

- True liveness detects more superfluous assignments than repeated liveness !!!

- True liveness detects more superfluous assignments than repeated liveness !!!

Liveness:

- True liveness detects more superfluous assignments than repeated liveness !!!

True Liveness:

