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Abstract

The purpose of this handout is to provide �warming up� exercises for my course, which will

be alternating between lecture, exercise solving, and �group discovery� style. It presupposes an

introductory course in graph theory and combinatorial optimization, so the most well-known

de�nitions are omitted. They can be found in any introductory course or book. The last part

of the course will show an advanced application of the learnt methods and acquired skills.

The intent of the course is to provide su�cient foundations in combinatorial optimization

so that you could then progress alone and orient yourself correctly, and try to solve your

optimization problems with appropriate methods. The exercises presented here prepare the

communication of these methods.

Some of these exercises will be restated and used during the course, and the full solution will

be given whenever it is necessary. Some others intend to revise some material of introductory

courses, in a way helpful for the course.

Have fun with them !

1 Help

Key-words : �ows, matchings, matroids, packing and covering, linear programming,
polyhedral combinatorics, minmax theorems of combinatorial optimization, algorith-
mic proofs, TSP (travelling salesman problem), T -joins, bin packing, complexity theory,
connectivity, ear-theorems, matroid intersection, P, NP, RP, coNP, NP-complete, ap-
proximation algorithms, APX-hard.

Advised Preliminary Knowledge : We will de�ne the notions we are dealing with
and brie�y repeat the theorems and algorithms of introductory courses, but it helps if
you are already familiar with the following :
Shortest paths in undirected graphs and digraphs, network �ows (Ford and Ful-

kerson's algorithm, max �ow min cut theorem, min cost �ows), bipartite matchings,
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Introduction to complexity theory (P, NP, coNP, PTAS, APX-complete, approxima-
tion ratio . . .) Kruskal's algorithm for minimum weight spanning trees, de�nitions and
basic facts about matroids, linear programming (simplex method, duality theorem),
similar basic knowledge of �rst courses of graph theory or operations research.
We will not use any knowledge about non-bipartite matchings or generalizations, a

simple approach to these will be fully included. (Some exercises below lead to Edmonds'
algorithm and Tutte's theorem.)

For patches �lling knowledge holes, or familiarizing in advance some new knowledge
of the course, I advise you have a look at one or several of the following textbooks. In
case of additional interest, you can deepen your knowledge with more advanced books
or research articles.

Textbooks :

Korte, Vygen : Combinatorial Optimization, New Edition, (Springer 2012).

Lovász : Combinatorial Problems and Ecercises (Akadémiai Kiadó)

Lovász, Plummer : Matching Theory (Akadémiai Kiadó)

Schrijver : Combinatorial Optimization (Springer)

Lau, Ravi, Singh : Iterative Methods in Combinatorial Optimization (2011)

Shmoys, Williamson : The Design of Approximation algorithms (2011)

More advanced books and articles related to the last part of the course :

Frank : Connexions in Combinatorial Optimization

Seb®, Vygen (2012) : Shorter Tours by Nicer Ears : 7/5-approximation for graphic TSP,
3/2 for the path version, and 4/3 for two-edge-connected subgraphs,
http ://arxiv.org/abs/1201.1870

Seb® (2012) Eight-Fifth Approximation for TSP Paths,
http ://arxiv.org/abs/1209.3523

Seb® (1990) Undirected distances and the postman-structure of graphs, Journal of
Combinatorial Theory, Series B, vol. 49,no. 1,1990.

2 Instructions for the exercises

We will discuss solutions of (the following or other) exercises whenever they are
needed during the course.
Even if there is not enough time to solve them all, having a look and little thinking

about them in advance may make it easier to discover a solution. Most of the exercises
I state contain an idea that may be useful to know for the course.
Let G be an undirected graph in this document directed graphs will not occur ; V (G)

denotes the set of its vertices, E(G) is its edge-set ; ν(G) denotes the matching number
of G, that is, the maximum size of a set of disjoint edges in G ; τ(G) is the minimum
vertex cover of G, that is, a set of vertices of minimum cardinality that meet every
edge of G.
If you don't understand an exercise, or you have any question or comment concerning

the course or this hand-out, please, don't hesitate contacting me by e-mail ; I will try
to answer if I am online.
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If you cannot solve an exercise, don't worry : to have understood it, to have thought
about it and to have realized the di�culty will already be helpful enough for the course.

3 Matchings

Exercise 1 Let G be a bipartite graph, and uv ∈ E(G). Then either ν(G−u) < ν(G),
or ν(G − v) < ν(G). Deduce from this a simple inductive proof of König's theorem
ν(G) = τ(G) for every bipartite graph G.

Exercise 2 Let G be a graph, and uv ∈ E(G). Then either ν(G − u) < ν(G), or
ν(G− v) < ν(G), or else for any maximum matching Mu of G− u, and Mv of G− v :
Mu ∪Mv contains an (u, v)-path P alternating between Mu and Mv.

If G is a graph, and X ⊆ E(G), then G/X denotes the graph we get from G by
identifying the endpoints of the edges in X (and deleting the edges induced by X).

Exercise 3 LetG be a graph, andM a maximummatching inG, moreover uv ∈ E(G),
ν(G − u) = ν(G), ν(G − v) = ν(G). Then for the alternating path P of the previous
exercise, the minimum number of uncovered vertices in G/P is the same as in G.

Exercise 4 Deduce by induction, using exercises 2 and 3 the theorem of Berge-Tutte :
the minimum number of vertices not covered by a matching is equal to the maximum
of q(X) − |X|, where q(X) denotes the number of odd components of G − X. If you
know Edmonds' algorithm deduce also a proof of its correctness.

If for a set X the value of q(X)− |X| is maximum, then it is called a Tutte-set.

Exercise 5 If v ∈ V (G) is contained in some Tutte-set then it is covered by every
maximum matching of G

4 Postman tours

A postman tour is a closed walk which uses every edge of the graph at least once.
Let us call a set postman set if its deletion leads to a graph with all degrees even (but
not necessarily connected).

Exercise 1 The minimum length of a postman tour is equal to |E(G)| + τ where τ
is the minimum cardinality of a postman set.

Exercise 2 A postman set P has minimum cardinality if and only if there is no circuit

of negative weight according to the weight function which is −1 on the edges of P and
1 on the other edges.

Exercise 3 What is the mistake in the following algorithm (it contains the maximi-
zation of matchings, why ?) : use a shortest path algorithm to �nd a negative circuit ; if
there is one, interchange the −1 and +1 weights, improving the postman set ; if there
is none, we are done by Exercise 2.
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5 Conservative weightings

A weighting of the edges of a graph is called conservative if there is no circuit of
negative weight. The distance between pairs of points is the minimum weight of paths.

Exercise 1 In a graph given with a conservative weighting, changing the sign of the
edges on a 0-weight circuit the distances do not change.

Hint : Take the symmetric di�erence of a shortest (a, b)-path and the 0 weight circuit
and observe that what you get has odd degree in a and b and even degree everywhere
else.

Exercise 2 Given a graph with two ±1 conservative weightings, but where the parities
of the number of negative edges adjacent to the vertices are the same, the distances
between any two vertices are also the same in the two graphs.

Exercise 3 In a graph G given with a conservative weighting and a ∈ V (G), a vertex
b 6= a whose distance from a is minimum is adjacent to exactly one negative edge.

Exercise 4 In a ±1-weighted conservative bipartite graph, contracting the edges
adjacent to a vertex b whose distance is minimum from a vertex a, the obtained graph
is also conservative with the original weighting, and the distances of the vertices of G
from a do not change.

Exercise 5 In a ±1-weighted conservative bipartite graph there exist edge-disjoint
cuts covering all the negative edges so that each cut contains exactly one negative edge.

6 T -joins

Let T ⊆ V (G), |T | even. A T -join is a set of edges whose set of odd degree vertices
is exactly T . Note that a postman set is a TG-join, where TG is the set of odd degree
vertices of G. Let τ(G, T ) be the minimum cardinality of a postman set in G, τ :=
τ(G, TG).

Exercise 1 In a bipartite graph τ is equal to the maximum number of pairwise
edge-disjoint cuts de�ned by bipartitions {X, Y } of V (G), where X contains an odd
number of vertices of odd degree. Is this a 'good characterization' (a theorem that puts
the corresponding decision problem in NP intersection coNP) ? Can you say something
about non-bipartite graphs ?

Hint : Use Exercise 5.5.

Exercise 2 Can you generalize Exercise 3.2 and the preceding Exercise 6.1 from
TG-joins (which are exactly the postman sets) to arbitrary T -joins ?

Exercise 3 Does Exercise 6.1 have a weighted generalization ?
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7 Matroid operations

If you never heard about matroids skip this series. We will de�ne matroids at the
course, and if necessary, spend time with the main examples, some equivalent axioms
and other basics. If you try though, you may be rewarded by Exercise 6.

A minor of the matroid M = (S,F) is a matroid obtained from M by a succession
of deletions and contractions of elements, that is :
M \ e :=M − e := (S \ e,F \ e), M/e := (S \ e,F/e),
where F \e = {F ∈ F : F ⊆ S \e}, F/{e} = {F ∈ F : F ⊆ S \e, F ∪{e} ∈ F}.
The dual M∗ = (S,B∗) of M = (S,B) (matroids de�ned with the basis axioms) is !

de�ned as B∗ := {S \B : B ∈ B}.
The sum of two matroids M = (S,F1), M = (S,F2) : M = (S,F), where F :=
{F = F1 ∪ F2 : F1 ∈ F1, F2 ∈ F2}.

Exercise 1 Show that the result of all these operations is a matroid.

Exercise 2 Show (M \e)/f = (M \f)/e, that is, the result of a succession of deletions
and contractions does not depend on the order of these operations.

Exercise 3 Show (M \ e)∗ =M∗/e.

Exercise 4 Show that the rank function of the dual of a matroid with rank function
r is : r∗(X) = |X| − (r(S)− r(S \X)).

Exercise 5 Show that in the special case of graphic matroids these operations spe-
cialize to the well-known graph operations of the same name. In particular, if G is a
planar graph, M∗(G) =M(G∗)∗; in addition, the circuits of G are the cuts of G∗.

Exercise 6 Prove Euler's formula : suppose G = (V,E) is a connected planar graph,
with f faces. Then |V | − |E|+ f = 2.

Hint : Use the preceding exercise to show that deleting a spanning tree from G you get
a spanning tree of G∗, and therefore (|V | − 1) + (f − 1) = |E|.
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